If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 7x2 + 53x + 24 = 0 Reorder the terms: 24 + 53x + 7x2 = 0 Solving 24 + 53x + 7x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 7 the coefficient of the squared term: Divide each side by '7'. 3.428571429 + 7.571428571x + x2 = 0 Move the constant term to the right: Add '-3.428571429' to each side of the equation. 3.428571429 + 7.571428571x + -3.428571429 + x2 = 0 + -3.428571429 Reorder the terms: 3.428571429 + -3.428571429 + 7.571428571x + x2 = 0 + -3.428571429 Combine like terms: 3.428571429 + -3.428571429 = 0.000000000 0.000000000 + 7.571428571x + x2 = 0 + -3.428571429 7.571428571x + x2 = 0 + -3.428571429 Combine like terms: 0 + -3.428571429 = -3.428571429 7.571428571x + x2 = -3.428571429 The x term is 7.571428571x. Take half its coefficient (3.785714286). Square it (14.33163266) and add it to both sides. Add '14.33163266' to each side of the equation. 7.571428571x + 14.33163266 + x2 = -3.428571429 + 14.33163266 Reorder the terms: 14.33163266 + 7.571428571x + x2 = -3.428571429 + 14.33163266 Combine like terms: -3.428571429 + 14.33163266 = 10.903061231 14.33163266 + 7.571428571x + x2 = 10.903061231 Factor a perfect square on the left side: (x + 3.785714286)(x + 3.785714286) = 10.903061231 Calculate the square root of the right side: 3.301978381 Break this problem into two subproblems by setting (x + 3.785714286) equal to 3.301978381 and -3.301978381.Subproblem 1
x + 3.785714286 = 3.301978381 Simplifying x + 3.785714286 = 3.301978381 Reorder the terms: 3.785714286 + x = 3.301978381 Solving 3.785714286 + x = 3.301978381 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-3.785714286' to each side of the equation. 3.785714286 + -3.785714286 + x = 3.301978381 + -3.785714286 Combine like terms: 3.785714286 + -3.785714286 = 0.000000000 0.000000000 + x = 3.301978381 + -3.785714286 x = 3.301978381 + -3.785714286 Combine like terms: 3.301978381 + -3.785714286 = -0.483735905 x = -0.483735905 Simplifying x = -0.483735905Subproblem 2
x + 3.785714286 = -3.301978381 Simplifying x + 3.785714286 = -3.301978381 Reorder the terms: 3.785714286 + x = -3.301978381 Solving 3.785714286 + x = -3.301978381 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-3.785714286' to each side of the equation. 3.785714286 + -3.785714286 + x = -3.301978381 + -3.785714286 Combine like terms: 3.785714286 + -3.785714286 = 0.000000000 0.000000000 + x = -3.301978381 + -3.785714286 x = -3.301978381 + -3.785714286 Combine like terms: -3.301978381 + -3.785714286 = -7.087692667 x = -7.087692667 Simplifying x = -7.087692667Solution
The solution to the problem is based on the solutions from the subproblems. x = {-0.483735905, -7.087692667}
| 8.3=2(q+1.1)+1.5 | | 8.3=2(q+1.1)+15 | | Y=8/9x-16 | | 18.5=3.7(b-14) | | n^2+10=100 | | X*3=x+25 | | 144+x=169 | | 2/5x-12=-4 | | 7+4y=8 | | 23(q+8)-53=752 | | X^5-5x^4+4x^3-20x^2=0 | | k(k+1)-525.6=0 | | 0.72+1.9z=5.5-0.4z | | 10n^2-35=64n | | 7x+4y=8y | | -2(y+6)=y+3+3+2y | | 7y-7=7y+13 | | 10(x-3)=-5x | | -7(2x+11)-2x=-13 | | 9+2(x+7)y+2= | | tan(x)=0.04 | | 161-r=-140 | | 9(j+3)-10=80 | | 0.79c+2=7 | | (7/12)*(-2/5) | | -6w-40=2 | | 2(z+18)=66 | | 14=7y | | 20+8x=50 | | 3+8(2t-6)=2t+14t | | -3d-5=31 | | 44+6x=80 |